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Abstract

Recently, the blockchain based cryptocurrencies and
crypto tokens have started to attract significant interest.
Crpyto tokens that are sold on existing blockchains such
as Ethereum have been used to raise significant funding
for many start-ups. At the same time, many crypto to-
kens have failed and resulted in significant financial loss
for their investors. This raises an important question:
Can we predict the anomalous crypto tokens using the
transaction graph data stored on the blockchain?

Unfortunately, due to dynamic and sparse nature
of the crypto token transaction graphs, existing graph
analysis techniques are not directly applicable. Instead,
we propose novel techniques based on topological data
analysis and functional data depth techniques that al-
low us to extract features that are useful for anomaly
prediction. Our extensive empirical analysis show that
the proposed techniques significantly outperforms base-
line models.

1 Introduction

Blockchain has started to revolutionize many fields
ranging from e-payments to digital ownership manage-
ment. In addition to blockchain based cryptocurren-
cies such as Bitcoin and Ethereum, there have been sig-
nificant interest in initial coin offerings (ICOs). ICOs
(many of them offered using Ethereum blockchain) have
enabled start-ups and organizations to raise capital by
selling digital coins that allow recipients to use the
promised service if and when available. For example,
one of the successful Ethereum ICOs was Binance. Us-
ing a Ethereum smart contract, 1 Binance sold coins
that allow recipients to pay exchange fees, withdrawal
fees, listing fees, and all other possible transaction ex-
penses on the Binance cryptocurrency trading platform.
One interesting aspect of Ethereum based ICOs is that,
using the transaction data that is kept on the Ethereum
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1Ethereum Smart contracts are Turing complete programs that

are executed on the Ethereum blockchain.
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Figure 1: Betti signatures of two Blockchain tokens.
The signatures can be used to visualize anomalous
behavior in the token’s network.

blockchain, it is possible to observe all the coin buying
and selling activity and represent all token transactions
as edges that connect two investor nodes on a graph.

Although the Binance coin was very successful, 46%
of 2017’s ICOs have already crashed [20]. This raises
some important research questions such as: 1) Can we
predict which ICOs are likely to fail by analyzing the
underlying transaction graph kept on the blockchain? 2)
Can we predict potential anomalies in the coin pricing
using transaction graph analysis?

Answers to these questions are crucial for enhanc-
ing our understanding of the important ICO trends.
Fundraising activity for supporting many start-ups has
already moved to blockchain platforms. For example,
ICOs accounts for 45% of the funding raised in ini-
tial public offerings in the 2nd quarter of 2018 [14].
Due to high failure rates of the ICOs, investments that
are made without sufficient prior information, other
than a trust in the core developer team, have re-
sulted in substantial losses. Hence, it is of vital impor-
tance to develop early warning systems to predict which
coins/tokens 2 are likely to fail and to spot anomalies

2We use the terms coins and tokens interchangeably in this
work.
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as early as possible.
However, identification and prediction of price

anomalies using the Ethereum network features pose
multifold graph mining challenges. First, the underlying
transaction graph is very sparse. Nodes (i.e., account
addresses) appear and disappear (i.e., no future trans-
action) daily, while the number of transactions widely
fluctuates across days. Hence, due to sparseness and the
dynamic nature of the transaction network, standard
global graph features (e.g., clustering coefficient etc.)
may not be a feasible indicator of an anomalous token
activity for a given token transaction graph. Second,
the overall market sentiment and transactions involving
other tokens can heavily impact the token price. For ex-
ample, theDAO hack [7] targeting an existing smart con-
tract shook investor morale and resulted in price plum-
meting for almost all the coins. As a result, conventional
graph analysis using techniques such as k-core does not
work effectively due to factors such as low node degrees
and clustering coefficients – thereby requiring develop-
ment of novel graph theoretic tools that are suitable for
analysis of local properties of time-varying, highly irreg-
ular, and very sparse networks.

We propose to address the above-mentioned chal-
lenges by introducing the arsenal of topological data
analysis (TDA) tools into blockchain analytics. In par-
ticular, our approach is based on the premise that an
anomalous situation in a transaction network must be
reflected in its local topology. To study the local net-
work structure and the anomalies associated with it, we
uniquely blend the concepts from algebraic topology and
functional data depth. The former is used to encode the
mesoscopic, or multi-lense topological structures under-
lying the Ethereum transaction network, while the lat-
ter provides a framework to measure the relative anoma-
lousness of the local topology. More specifically, we in-
troduce a novel concept of Betti functions that allow
us to efficiently and effectively track a token network
that is weighted and multi edged over time. Further-
more, coupling analysis of persistent homologies (PH)
with functional data depth, we develop a new notion of
Betti signatures that offer an insight on the most illus-
trative, or “normal” baseline behavior of a token — as a
result, we can also more efficiently detect anomalous to-
ken activity. Finally, we combine edge counts (i.e., num-
ber of transactions between nodes) and edge weights
(i.e., transaction amounts) to create filtering techniques
and efficiently analyze persistent homologies via the pro-
posed Betti functions on Ethereum graph. The resulting
Betti functions are then incorporated into a time series
model to predict potential future price anomalies.

MK:I cut some parts to save space. The
importance of our methodology and findings can be

summarized as follows:

• We develop a novel functional summary for persis-
tent homology: a Betti function. The new Betti
functions open the door to systematic integration
of TDA and functional data analysis for complex
network analytics.

• We propose a new measure of the most illustrative,
or “normal” behavior on the Ethereum transaction
network: a Betti signature. Betti signatures,
based on analysis of network PH and functional
data depth, allows us in a data-driven way to quan-
tify and visually assess differences between normal
and anomalous transaction activity. Figure 1 shows
signatures of two Ethereum tokens. Similar to Betti
functions, applicability of the new Betti signatures
is not limited to Ethereum and complex networks.

• We develop a filtering approach that significantly
reduces the (prohibitively high) computational
costs of TDA. We report the first results where
TDA tools can be adopted in large networks while
preserving the performance.

• We report the first results for crypto-token price
anomaly prediction, and show that token networks
contain adequate information to model external
price arbitration in the real world. As the crypto-
token ICOs have reached $12B in the first half of
2018 [14], our prediction results have important
real-life implications in start-up funding.

2 Related work

MK:I think we need to say why Betti functions
are novel. So we need short discussion on
applications of TDA on graphs, and why we are
different. We outline three relevant research areas:
Ethereum graph analysis, Blockchain price prediction
and anomaly detection.

Ethereum graph analysis. Differing from the
unspent transaction output based currencies (e.g., Bit-
coin) where each transaction can have multiple inputs
and outputs [8, 19], Ethereum transactions transfer
ether or tokens from one address to another. As such,
Ethereum lends itself to traditional network analysis.
For instance, [4] studied empirical properties of Ethe-
reum and [21, 22] explored token networks, in terms of
degree distribution, power laws and clustering. How-
ever, to this date there are no results that employ net-
work tools for Ethereum price analytics.

Cryptocurrency price prediction. Analyzing
transactions and addresses to track the Bitcoin econ-
omy has become an important research direction [24].

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited



An early time series prediction approach by [17] uses
a Bayesian optimized recurrent neural network (RNN)
and Long Short Term Memory (LSTM) network with
varying degrees of success. Blockchain features, such
as average transaction amount and number of transac-
tions, are also shown to exhibit mixed performance for
cryptocurrency price forecasting [9]. Different block-
chain graph characteristics, e.g., average degree, can be
used as additional learning features [2]. Recently, [1]
proposed to employ blockchain motifs, termed chainlets,
as features to predict Bitcoin price. However, all men-
tioned approaches are carried out for cryptocurrencies
and track a single coin. In contrast, our goal is to track
multiple cryptoassets at the same time. Furthermore,
to the best of our knowledge, this is the first study that
predicts the price of a token traded on Ethereum.

Blockchain anomaly detection. Blockchain ad-
dresses can be linked and clustered to identify people
behind suspicious transaction patterns in cryptocurren-
cies [23]. The pattern is usually defined as a repeat-
ing shape that involves moving coins from a (black) ad-
dress to an online exchange address, where the coins
can be cashed out without being confiscated by au-
thorities. The black address that starts the transaction
chain may be related to money laundering [18] and ran-
somware payment [12]. There exists ample evidence of
these anomalies in the transaction network [5, 16]. A
more recent approach found anomalies in Bitcoin price
by linking addresses to transactions in time [10]. In con-
trast, we do not assume any prior knowledge about pat-
tern shapes or addresses; our unsupervised data depth
approach tracks token networks for price anomalies.

3 Background on Ethereum and CryptoTokens

The Ethereum project [26] was created in July 2015
to provide Smart Contract functionality on a block-
chain. Smart Contracts are self-executing Turing com-
plete software codes which are replicated across a dis-
tributed, decentralized blockchain network. Smart con-
tracts are created and put to a blockchain address by
its developers. Smart Contracts ensure unstoppable, de-
terministic code execution that can be verified publicly.
Some smart contracts implement mechanisms that al-
low trading or sharing digital assets, known as crypto-
tokens, on the blockchain. We will refer to such a
smart contract as a crypto-token contract, and use the
term token interchangeably. A token is traded publicly
among blockchain nodes, and may have an associated
dollar value which is arbitrated by token demand and
supply in the real world. Online exchange websites, such
as CoinMarketCap.com, can be used to track current
valuations of tokens. Most tokens have a fixed supply
that is set at the time when a token contract is created.

Table 1: Symbols table.

Symbol Explanation

ω edge weight function
ω̃ extension of ω
ωuv weight of edge (u, v)
F feature matrix
ht a t day long horizon
δ min price change for anomaly
ρ prediction accuracy
ε scale parameter
Cε simplicial complex at scale ε
LRi Price log return
VRε Vietoris-Rips complex at scale ε

βp,Bp,Bsp Betti-p number, function and signature
X Banach space

RD rolling depth
MBD modified band depth

As the supply is fixed, the value of a token is mostly
determined by its demand.

Utility of a token is a hotly debated topic; although
some tokens are used to buy services in real life,
most tokens exist as online entities with no intrinsic
value. For example, the Cryptokitties token is used to
purchase, collect, breed and sell various types of “virtual
cats”.

As most blockchains, the Ethereum blockchain at-
taches an input data field to each transaction to store
log data. Smart contract transactions use this input
data field to transmit messages; creating a transaction
with input data to a Smart Contract is analogous to
passing variables to a function. The earliest versions
of Smart Contracts were developed without a common
standard for transactions, input messages and functions
contained in the contract. As such, each time a user
wanted to transmit a message to the smart contract,
she needed to know which message structure to use.
Recently, the community has proposed standards, such
as ERC203 (Ethereum Request for Comments 20) and
ERC223, which define a common list of rules for tokens
to follow within the larger Ethereum ecosystem.

For example, according to the ERC20 standard,
each token must implement a number of standard func-
tions, such as totalSupply(). This naming standard al-
lows exchanges, users and developers to create transac-
tions for tokens in an automated manner. For example,
when address A1 wants to transfer its tokens (e.g., 20
OmiseGo tokens) to address A2, it creates a transac-
tion where the “to” address is the OmiseGo address,

3https://theethereum.wiki/w/index.php/
ERC20 Token Standard
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and the input data contains the message “transfer(A2,
x=20)”. Once the token discovers that a mined block
contains this transaction, it updates the balance of both
addresses.

Pre-processing. We created our Ethereum
dataset by installing the official Ethereum Wallet 4 and
downloading all blocks. We used the EthR [11] library
to query Ethereum blocks through the Go Ethereum
Client (i.e., Geth). Our dataset contains all the Ethe-
reum data from 2015 July to 2018 May 6th, with a total
of 5.5 million blocks.

By parsing the data, we discovered 1.7K ERC20
tokens which had more than 10K transactions. We
included an ERC20 token in our analysis if it had
more than $100M in market value, as reported by the
EtherScan 5 online explorer. This selection resulted in
31 tokens. Our selection was motivated by a desire
to have verifiable prediction results on valuable tokens
which will not fail and disappear in a short time.

On average, each token has a history of 297 days,
with minimum and maximum of 151 and 576 days,
respectively. Among the ERC20 tokens, we focus
on transfer and approve+transferFrom functions which
transfer tokens between two addresses. In the next
section, we will detail our graph constructs.

4 Methodology

In this section, we explain the proposed methodology for
price anomaly prediction for Ethereum crypto-tokens.
We define our problem as follows:

Problem Statement: Given the transaction network
of an Ethereum token and time series of the token
price in fiat currency, predict whether the token price
will change more than δ, |δ| > 0, in the next T days.
Identify the maximum horizon value hT such that the
prediction accuracy is at least ρ.

Our goal is to infer topological information from a
graph G at multiple resolutions (i.e., at a mesoscopic
level), using the notion of persistent homology, and re-
late it to organization and functionality of the Ethereum
network. We start by detailing persistent homology and
associated summaries.

4.1 Persistent Homology and Its Summaries
Suppose G = (V,E, ω) is a weighted graph, where V
and E are the set of nodes and edges, respectively.
ω : E → R+ is a weight function encoding similarity
between two nodes connected by an edge. To account
for dissimilarity between two disconnected nodes, we

4https://www.ethereum.org/
5EtherScan.io

introduce the weight ω̃ : V × V → R+

ω̃uv =

{
ωuv (u, v) ∈ E
∞ (u, v) /∈ E.

In a context of Ethereum network, ω represents the
amount of transferred tokens by a transaction.

The key rationale behind our approach is to vary
dissimilarity measure ω̃ and to study which topologi-
cal features appear and disappear at increasing level of
dissimilarity between nodes of Ethereum network. Fea-
tures detected over a wider range of dissimilarities are
deemed to be “true” Ethereum patterns and to exhibit a
higher role in anomaly detection. This task turns into a
computationally feasible combinatorial problem which
is solved using the mathematical formalism of persis-
tent homology (PH). The most important aspect of PH
is that it allows to analyze data at multiple spatial res-
olutions in a unified way, and to bypass a subjective
selection of the dissimilarity parameter or searching for
its optimal value. To find PH, we first need to convert
our data into a family of abstract simplicial complexes,
indexed by dissimilarity measure.

Definition 1. (Abstract simplicial complex) Let
X be a discrete set. An abstract simplicial complex is
a collection C of finite subsets of X such that if σ ∈ C
then τ ∈ C for all τ ⊆ σ. If |σ| = p+ 1, then σ is called
a p-simplex.

Intuitively, a simplicial complex is a representation of
X as a collection of points, intervals, triangles, tetra-
hedrons, and their higher order counterparts. Vietoris-
Rips complex is a widely used simplicial complex due
to its easy construction and fast computational imple-
mentation [6].

Definition 2. (Vietoris-Rips complex) Let X be a
discrete set in some metric space. A Vietoris-Rips
complex on X at dissimilarity scale ε ≥ 0 is denoted
by V Rε, is an abstract simplicial complex whose p-
simplices, p = 0, . . . , d, consist of points which are
pairwise within distance of ε. Here, d is called the
dimension of the complex.

Now, we fix an increasing sequence of scales ε1 < ε2 <
. . . < εn and construct a chain of nested VR complexes
called a finite VR filtration V Rε1 ⊆ V Rε2 ⊆ . . . ⊆
V Rεn , where V Rεk , k = 1, . . . , n, is a VR complex on
V such that V Rεk =

{
σ ⊂ V |ω̃uv ≤ εk,∀u, v ∈ σ

}
.

Armed with the VR filtration, we now offer a
formal multi-lense glimpse into the Ethereum network
geometry and track topological features that appear
and disappear with an increasing scale εk. Analysis
of evolution of such topological features shed light
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Figure 2: Betti functions for Tronix token network.

on organization of the Ethereum transaction network.
That is, we can expect that features with a longer
lifespan, i.e. persistent features, have a higher role
in explaining functionality of the Ethereum network
than features with a shorter lifespan. These short term
features are regarded as topological noise. Furthermore,
we use persistent features to distinguish normal and
anomalous dynamics in token transaction activities.

To extract summaries of such topological features
at a mesoscopic level, we can use Betti numbers.

Definition 3. (Betti number) Betti-p number of a
simplicial complex C of dimension d, denoted by βp(C),
is defined as

βp(C) =


# of connected components of C p = 0
# of 1-D holes or tunnels of C p = 1
# of 2-D holes or cavities of C p = 2
· · ·
# of d-D holes of C p = d

That is, sequence of Betti numbers represents the counts
of different topological features of the simplicial complex
(for an illustrative example see Fig. 3). In this context,
we introduce a novel notion of Betti functions which
relate these counts to the scale parameter viewed as
continuum. Sequence of Betti numbers are hence finite
dimensional realizations of Betti functions (see Fig. 2).

Let {Cε}ε∈R+ be a continuous filtration of simplicial
complexes i.e., Cε ⊆ Cε′ for any 0 ≤ ε < ε′.

Definition 4. (Betti function) The Betti-p func-
tion Bp : R+ → {0, 1, 2, 3, . . .}, p = 0, . . . , d, associated
with {Cε}ε∈R+ is defined as

Bp : ε 7→ βp(Cε).

The Betti functions can be regarded as a functional
summary statistic of the network’s topological struc-
ture. In contrast to other summaries for topological

Figure 3: Betti numbers of nested VR complexes of
dimension 3 at increasing scales ε. The point cloud
is sampled from an annulus with outer radius 1 and
inner radius 0.5. Here, 0-simplices are depicted by red
points, 1-simplices by black edges, 2-simplices by yellow
triangles and 3-simplices by blue tetrahedrons. For ε of
0.28, the number of connected components β0 is 8, the
number of 1-D holes β1=1 (formed by four edges at the
top) and the number of 2-D holes β2=0.

features such as a barcode (see, e.g., [25]), the newly
proposed notion of Betti functions can not only be eas-
ily incorporated into machine learning models but also
provide a systematic linkage with the tools of functional
data analysis. In particular, due to the functional de-
pendency among Betti numbers at different scales, it is
important to view {Bp(εk)}nk=1 as a realization of Betti
function Bp as opposed to a vector in Rn. This point of
view allows us to utilize methods from functional data
analysis such as a concept of functional data depth.

Example. Consider the Betti functions in Figure 2 that
are computed for a daily network of the Tronix token.
Here β0 function reaches 0 at ε of 1, whereas β1 and
β2 functions reach non-zero values around 0.7 and
1.5, respectively. We find visible dependencies among
Betti functions. Note that as the dissimilarity scale ε
increases, β0 values tend to disappear and, reverse, β1
appears. Similarly, a transition from β1 to β2 occurs at
ε of 2. The shape of these functions encode important
information about the token network.

4.2 Data depth of Betti functions Let
{(Gt, ω̃t)}Tt=1 be a time series of weighted graphs
and {Bp,t}Tt=1 be the associated sequence of Betti
functions (see Section 4.1). To assess which Betti
functions (or equivalently which transaction networks)
are anomalous relative to others, we employ the notion
of data depth.

Definition 5. (Data Depth) If X is a Banach space
(e.g., Rn) and F is a set of probability distributions
on its Borel subsets, then a data depth is a function
D : X ×F → [0, 1] such that D(·|F ) is a center-outward
ordering of elements of X with respect to F . The depth
of y ∈ X with respect to {yi}mi=1 ⊆ X is denoted by

D(y|y1, y2, . . . , ym) and is defined as D(y|F̂m), where
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Figure 4: Betti curves of the Tronix token. Figure 1b
shows the corresponding Betti signature.

F̂m is the empirical distribution of {yi}mi=1.

Since our focus is on Betti functions, we resort
to functional depth functions (where X is a Banach
space of functions). Of them, the modified band
depth (MBD) [15] function is particularly suitable for
identifying anomalies as it accounts for both the shape
and magnitude of the curves. Additionally, MBD is
robust and enjoys fast computational implementation.
However, our framework is general enough and in
principle can take in any other concept of functional
data depth.

Intuitively, MBD measures the extend to which
data point y lies within a given set Y. More precisely,
it is the average of proportions of times for which y
lies in the bands determined by all possible pairs in Y.
MBD enables us to order a set of functions in [0, 1]-
scale, where the depth values closest to zero and one
correspond to the most anomalous and central functions
respectively.

We introduce a concept of Betti signature which is
defined as the deepest or most central Betti function.

Definition 6. (Betti signature) For a given collec-
tion of Betti functions {Bp,t1 ,Bp,t2 , . . . ,Bp,tm}, their
Betti signature is defined as

Bsp := argmax
Bp,t∈{Bp,t1 ,...,Bp,tm}

MBD(Bp,t|Bp,t1 , . . . ,Bp,tm)

Consider Betti functions {Bp,t}Tt=1 associated with
an evolving token transaction network over days t =
1, 2, . . . , T . For instance, Figure 4 shows the Betti
curves of the Tronix token in four consecutive days.
Although each day visually looks different, the network
February 8th presents a clear anomaly in terms of its
shape. To measure how the Betti functions change
over time and compare with the ones prior to them, we

calculate the MBD depth of each day’s Betti function
with respect to those of the past w days. To this end,
we introduce a notion of rolling depth (RD):

RDw(Bp,t) := MBD(Bp,t|Bp,t,Bp,t−1, . . .Bp,t−w+1).

The concept of RD echoes the rolling window ap-
proaches used to detect signals of short and long term
trends in algorithmic trading and to construct stock
price indicators such as Percentage Price Oscillator
(PPO) and Moving Average Convergence Divergence
(MACD) [3, 27].

4.3 Anomaly Detection with Topological Fea-
tures Our main goal is to predict individual Ethereum
token price changes based on abnormal behaviour of
the user transactions network. YGL:Please, con-
nect it to section 4.1 and 4.2. To solve this prob-
lem, we predict abnormal price change within the next
T days horizon, hT , by using the number of transac-
tions in the daily network (E), the RMBD of Betti
functions and log-return of the token’s price. We de-
fine log-return of a token on the ith day as LRt =
(Pricet − Pricet−1)/(Pricet−1).

We label a day t as anomalous if there is a significant
change in token’s price. More specifically, if |LRt| ≥ δ
where δ > 0 is a user-defined threshold (i.e., magnitude
of a price shock), then t is considered as an anomalous
day. We build one predictive model for each Ethereum
token and examine performance accuracy for different
prediction horizons h > 0.

Our token-based price anomaly detection method-
ology for Ethereum crypto-tokens problem is summa-
rized as follows. For each day, t ∈ Tk, with avail-
able token data, we use the token’s price log return,
LR, and calculate the binary flag variable with values
equal to true if abnormal price change (|PCt| ≥ δ),
was detected in at least one of the next h days (i.e.,
days t + 1, t + 2, . . . , t + h) and false otherwise. Here,
t = 1, . . . , T is the set of dates for which we have the
kth token data and K is the total number of tokens we
consider in the study. Next, we construct the user trans-
actions network for kth token on day t. Based on this
network, we calculate: (1) the number of user trans-
actions (the number of edges in the network), E; (2)
7-day rolling depth values for Betti numbers (β0, β1,
and β2), denoted as RD7(B0), RD7(B1) and RD7(B2),
respectively.

Rationale behind our modeling approach is that
network topological features, summarized in terms of
RMBD of Betti functions, will add an important layer
of information that can be missed by the traditional
network summaries. Hence, to test the improvement
in anomaly prediction due to adding the network topo-
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Table 2: Model descriptions.

Model Explanation F: Input
M1 Price and Tx LRt, E
M2 Betti 0 LRt, E, RD(B0)
M3 Betti 0, 1 LRt, E, RD(B0), RD(B1)
M4 Full model LRt, E, RD(B0), RD(B1), RD(B2)

logical features, we evaluate predictive performance of
the four models listed in Table 2, using the tradi-
tional (token price and the number of transactions) and
and topological variables ( rolling depth values of Betti
functions). We fit each of the four models using the
randomForest package in R. Parameter values in these
prediction models is described in Section 5. We use the
first 2/3 of a token’s timeline period as training and the
remaining 1/3 of the period as the test data set. Alg. 1
details the process.

Algorithm 1 Betti Curves Generation

1: procedure Curve(G: token graph, K: filter, d:
Betti dimension max, w: window)

2: induce graph G′ for top−K nodes
3: compute ω̃uv for each e = (u, v) ∈ E
4: for Betti dimension p ={0,. . . ,d} do
5: for each day Gt ∈ G′ do
6: compute Bp,t
7: F tp ← RDw(Bp,t)

return feature matrix F

5 Experimental settings

In this section, we explain settings for the four compo-
nents of our work.

Betti Signatures. We compute the Betti functions
for up to p = 2 (i.e., B0,., B1,. and B2,.) by using
GUDHI which is a generic open source C++ library
for Topological Data Analysis.

In Section 4.3, we outline a filtered network ap-
proach to compute Betti functions, where only the top-k
nodes and their transactions are used. We experimented
with k = 50, 60, . . . , 180 and found that the best results
are attained for k of 150. Due to space limitations, re-
sults with other k values are provided in the technical
report [13]. Our data indicates that even for the most
traded tokens such as Tronix and Bat, top 150 nodes in
daily networks create 75% and 80% of all edges, respec-
tively. The filtered node approach effectively removes
15− 20% of the least active nodes in Betti calculations,
which results in more competitive performance.

Prediction Models. In our study, each Random For-
est model used ntree= 500 trees, and sampling all
rows of the data set is done with replacement. Num-
ber of variables used at each split (mtry argument in
randomForest function) are for each of the four mod-
els is the floor of number of features (as given by Ta-
ble 2)(i.e., b

√
|F |c).

Anomaly Definition. In Section 4.3 we define anoma-
lous days based on a price change threshold δ.

Token networks have a mean of 0.08 in price return,
and the Veros token has the maximum return of 649%.
In order to choose the δ value, we experimented with
δ = 0.05, 0.1, . . . , 0.5. Our results show that the
model accuracy and δ values are positively correlated.
However, there is a trade-off between accuracy and
number of predicted anomalies. Here we set δ = 0.25 for
better accuracy, but in [13] we offer a detailed discussion
for all the considered δ values.

Performance metrics. We report prediction re-
sults in terms of accuracy, precision, sensitivity (re-
call), and specificity. The accuracy is calculated as
(TP + TN)/(TP + FP + TN + TP ), where TP, TN,
FP and FN refer to true-positive, true-negative, false-
positive and false-negative, respectively. Precision and
sensitivity are defined as TP/(TP+FP ) and TP/(TP+
FN) respectively. The specificity is calculated as
(TN)/(TN + FP ).

6 Experimental Results

In this section, we demonstrate the effectiveness of our
approach under different settings. In the interests of
providing scientifically reproducible results, all code and
datasets used in this work are available at https://

github.com/EthereumCurves/EthereumCurves. Due
to space limitations, throughout this text we cite [13]
to inform the reader about a detailed version of the
discussed results.

6.1 Model performance We predict price anoma-
lies in 31 token networks, where a total of 9042 days
are predicted as anomalous (anomaly:true) or non-
anomalous (anomaly:false). In 145 of these days, a true
price anomaly occurs, as defined by a price return of
more than 25%. Mean and median numbers of anoma-
lies are 6.59 and 2 per token, respectively. The Veros
token had a maximum of 46 anomalies. Nine tokens do
not have any price anomalies in their test period (the
last 1/3 of their timeline). Number of anomalous tokens
in time are given in Figure 5. In the days leading up to
2018 January, token prices saw big increases; as shown
in the figure, on some days more than 20 tokens had
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> 25% price returns. In this active period (October-
December 2017) price of the Ethereum currency, ether,
increased from $305 to $1389. In 2018 January we see
token prices decreasing sharply, but unlike the increase
period, we observe fewer (≤ 7) anomalies in tokens on
the same day.

Figure 5: Number of (price) anomalous tokens in time.

Figure 6 shows the number of anomaly:true predic-
tions by models. M2, M3 and M4 (Betti models) predict
the same 52 days as anomalous. A further 9 days are
predicted anomalous by a single Betti model only. Betti
models make a lower number of anomaly (i.e.,true) pre-
dictions compared to the baseline M1 model, which uses
the price and transaction information only. For up to
three day horizons in Figure 7a, all models have accu-
racy > 0.7. The figure shows that compared to other
models, the M4 (full) model has the least deteriorating
performance as horizon increases from 1 to 7. The ac-
curacy results offer evidence that Betti models are more
conservative in making anomalous day predictions, and
their accuracy is better than the baseline model M1.

We report the sensitivity results in Figure 7b, which
show that model M3 has the highest sensitivity for
all horizons. Other than at h = 1, Betti models
consistently outperform the baseline model M1. Figure
7c gives the specificity results. In the figure model M4
has the best values for h > 1. However, one of the Betti
models, M3, performs worse than M1.

As M4 differs from M3 in its use of β2, we find
the conflicting performance of M3 and M4 interesting.
Sensitivity and specificity measure performance with
regard to true positives and true negatives, respectively.
As such, these results indicate that the use of β2 in M4
decreases performance in true negative predictions, but
helps in predicting true positives. In other words, an
increase in two dimensional holes on networks can be
used as a predictor of anomalies. MK:Any idea on
why the above sentence may be correct ??

Figure 6: A Venn diagram for the number of predicted
anomalies in all token networks (for hT=1). Intersecting
regions indicate agreement on predictions. In 52 days,
all models predict that there will be an anomaly.

6.2 Predictability in Token Networks Figure 8b
overlays the accuracy of model M4 (h = 1) with the
average normalized prices of 31 tokens. The confidence
bands around central lines indicate the spread in pre-
dictions and prices. Price increases of late 2017 are very
prominent in the figure, as well as the Ethereum price
crash of Jan-Feb 2018. From March 2018, prediction
accuracy becomes more stable, hovering just above 0.9.
We show the accuracy for each token in Table 3 [13].

Although predicting true negatives (non-anomalous
days) is useful, the most important task of anomaly
detection is to predict true anomalies well in advance.
The unbalanced nature of our dataset complicates this
task; only 1.58% of all days are true anomalies, limiting
the training cases to a few days per each token.

To account for the unbalanced data problems, we
use precision to track model performance for true pos-
itives. We reach the highest average precision of 0.393
per token in the M4 model (h = 2) [13]. We outline two
discussion points to explain this precision result.

Temporal effects: Our models use 2/3 of a token’s
lifetime for training, and the remaining 1/3 for test.
An issue that complicates predictions is the temporal
changes that the Ethereum blockchain has undergone
during our experiments. As seen in Figure 5, training
(second half of 2017 for most tokens) and test (2018 Jan.
and onward) periods have drastically different temporal
patterns, in terms of reduced price in fiat currency and
node activity on the blockchain. Tokens had fewer
anomalies in the test period, and nine of them did not
have any. A solution to this changing data behaviour
issue is to analyze the blockchain continuously and
identify limited time regions to train from as blockchain
platforms mature and tokens accumulate more data.
Currently, our EthereumCurves website [13] is designed
to serve the community for this purpose.

Global view: The blockchain ecosystem, specifi-
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(a) Accuracy (b) Sensitivity (c) Specificity

Figure 7: Performance of the four models for increasing horizon values.

cally Blockchain platforms, are still in infancy. As the
ecosystem is still maturing, an event in an obscure part
of the ecosystem can affect multiple tokens at once. An
example of this is the theDAO incident, where a token’s
misfortunes had the Ethereum platform almost collapse.
In addition to negative developments, perceived good
news lead to change in activity and price as well. In
Figure 5, we see that there are days when more than 20
tokens had price anomalies (in increases) when Ethe-
reum was gaining recognition in the world (late 2017).
As external events create sudden price changes (where
the token network contains no preceding signal), train-
ing and testing for anomalies becomes a difficult task.
Once the ecosystem matures and each token moves by
events related to its own development, we expect our
models to capture price anomalies much better. Fig-
ure 8a offers evidence for this assumption. In the later
days of 2018, the figure shows that more anomalies could
be predicted, compared to the early days of 2017. The
model did not predict more than one anomaly per day
in 2017, whereas 2018 has multiple days where we cor-
rectly predict two or three anomalies.

Table 3: Accuracy of models for the top-12 tokens
(h = 1). The tokens are ordered by the average edge
count Ē in their daily networks.

token M1 M2 M3 M4 Ē

tronix 0.937 0.987 0.987 0.987 5198.2
mcap 0.939 0.948 0.887 0.904 1502.1
storj 0.990 0.990 0.990 0.990 1224.3
bnb 0.990 0.990 0.990 0.990 1089.5

golem 0.972 0.972 0.972 0.978 1065.0
zrx 0.989 0.989 0.989 0.989 905.4

cybermiles 0.961 0.980 0.961 0.980 872.7
kybernetwork 0.987 0.987 0.987 0.987 792.5

icon 0.908 0.908 0.892 0.923 783.5
bat 0.982 0.982 0.982 0.982 773.5

(a) True (bars) and predicted (dots) anomalous
tokens in the testing period of Model M4 for
h = 2.

(b) Accuracy of model M4 (h = 1), and average
price for 31 tokens in time.

Figure 8: Performance of models for increasing horizon
values.

7 Conclusions

Our results offer strong evidence that Ethereum token
anomalies can be predicted by analyzing token net-
works. Although data quality issues exist, we believe
that effective analytic tools based on persistent ho-
mologies (PH) and functional data depth ideas can be
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developed for this burgeoning ecosystem. We present
EthereumCurves as the first step in this direction. Our
results indicate that using features extracted based on
PH can result in significant improvement in predicting
price anomalies in crypto tokens.
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